Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Quantification of muscle co-contraction using supersonic shear wave imaging.

Identifieur interne : 001870 ( Main/Exploration ); précédent : 001869; suivant : 001871

Quantification of muscle co-contraction using supersonic shear wave imaging.

Auteurs : Brent J. Raiteri [Australie] ; François Hug [Australie] ; Andrew G. Cresswell [Australie] ; Glen A. Lichtwark [Australie]

Source :

RBID : pubmed:26776929

Descripteurs français

English descriptors

Abstract

Muscle stiffness estimated using shear wave elastography can provide an index of individual muscle force during isometric contraction and may therefore be a promising method for quantifying co-contraction. We estimated the shear modulus of the lateral gastrocnemius (LG) muscle using supersonic shear wave imaging and measured its myoelectrical activity using surface electromyography (sEMG) during graded isometric contractions of plantar flexion and dorsiflexion (n=7). During dorsiflexion, the average shear modulus was 26 ± 6 kPa at peak sEMG amplitude, which was significantly less (P=0.02) than that measured at the same sEMG level during plantar flexion (42 ± 10 kPa). The passive tension during contraction was estimated using the passive LG muscle shear modulus during a passive ankle rotation measured at an equivalent ankle angle to that measured during contraction. The passive shear modulus increased significantly (P<0.01) from the plantar flexed position (16 ± 5 kPa) to the dorsiflexed position (26 ± 9 kPa). Once this change in passive tension from joint rotation was accounted for, the average LG muscle shear modulus due to active contraction was significantly greater (P<0.01) during plantar flexion (26 ± 8 kPa) than at sEMG-matched levels of dorsiflexion (0 ± 4 kPa). The negligible shear modulus estimated during isometric dorsiflexion indicates negligible active force contribution by the LG muscle, despite measured sEMG activity of 19% of maximal voluntary plantar flexion contraction. This strongly suggests that the sEMG activity recorded from the LG muscle during isometric dorsiflexion was primarily due to cross-talk. However, it is clear that passive muscle tension changes can contribute to joint torque during isometric dorsiflexion.

DOI: 10.1016/j.jbiomech.2015.12.039
PubMed: 26776929


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Quantification of muscle co-contraction using supersonic shear wave imaging.</title>
<author>
<name sortKey="Raiteri, Brent J" sort="Raiteri, Brent J" uniqKey="Raiteri B" first="Brent J" last="Raiteri">Brent J. Raiteri</name>
<affiliation wicri:level="1">
<nlm:affiliation>The University of Queensland, Centre for Sensorimotor Performance, School of Human Movement and Nutrition Sciences, Brisbane, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>The University of Queensland, Centre for Sensorimotor Performance, School of Human Movement and Nutrition Sciences, Brisbane</wicri:regionArea>
<wicri:noRegion>Brisbane</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Hug, Francois" sort="Hug, Francois" uniqKey="Hug F" first="François" last="Hug">François Hug</name>
<affiliation wicri:level="1">
<nlm:affiliation>University of Nantes, Laboratory "Movement, Interactions, Performance" (EA 4334), UFR STRAPS, F-44000 Nantes, France; The University of Queensland, NHMRC Centre of Clinical Research Excellence in Spinal Pain, Injury and Health, School of Health and Rehabilitation Sciences, Brisbane, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>University of Nantes, Laboratory "Movement, Interactions, Performance" (EA 4334), UFR STRAPS, F-44000 Nantes, France; The University of Queensland, NHMRC Centre of Clinical Research Excellence in Spinal Pain, Injury and Health, School of Health and Rehabilitation Sciences, Brisbane</wicri:regionArea>
<wicri:noRegion>Brisbane</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Cresswell, Andrew G" sort="Cresswell, Andrew G" uniqKey="Cresswell A" first="Andrew G" last="Cresswell">Andrew G. Cresswell</name>
<affiliation wicri:level="1">
<nlm:affiliation>The University of Queensland, Centre for Sensorimotor Performance, School of Human Movement and Nutrition Sciences, Brisbane, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>The University of Queensland, Centre for Sensorimotor Performance, School of Human Movement and Nutrition Sciences, Brisbane</wicri:regionArea>
<wicri:noRegion>Brisbane</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Lichtwark, Glen A" sort="Lichtwark, Glen A" uniqKey="Lichtwark G" first="Glen A" last="Lichtwark">Glen A. Lichtwark</name>
<affiliation wicri:level="1">
<nlm:affiliation>The University of Queensland, Centre for Sensorimotor Performance, School of Human Movement and Nutrition Sciences, Brisbane, Australia. Electronic address: g.lichtwark@uq.edu.au.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>The University of Queensland, Centre for Sensorimotor Performance, School of Human Movement and Nutrition Sciences, Brisbane</wicri:regionArea>
<wicri:noRegion>Brisbane</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2016">2016</date>
<idno type="RBID">pubmed:26776929</idno>
<idno type="pmid">26776929</idno>
<idno type="doi">10.1016/j.jbiomech.2015.12.039</idno>
<idno type="wicri:Area/PubMed/Corpus">002248</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">002248</idno>
<idno type="wicri:Area/PubMed/Curation">002222</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">002222</idno>
<idno type="wicri:Area/PubMed/Checkpoint">002222</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">002222</idno>
<idno type="wicri:Area/Ncbi/Merge">003004</idno>
<idno type="wicri:Area/Ncbi/Curation">003004</idno>
<idno type="wicri:Area/Ncbi/Checkpoint">003004</idno>
<idno type="wicri:Area/Main/Merge">001865</idno>
<idno type="wicri:Area/Main/Curation">001870</idno>
<idno type="wicri:Area/Main/Exploration">001870</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Quantification of muscle co-contraction using supersonic shear wave imaging.</title>
<author>
<name sortKey="Raiteri, Brent J" sort="Raiteri, Brent J" uniqKey="Raiteri B" first="Brent J" last="Raiteri">Brent J. Raiteri</name>
<affiliation wicri:level="1">
<nlm:affiliation>The University of Queensland, Centre for Sensorimotor Performance, School of Human Movement and Nutrition Sciences, Brisbane, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>The University of Queensland, Centre for Sensorimotor Performance, School of Human Movement and Nutrition Sciences, Brisbane</wicri:regionArea>
<wicri:noRegion>Brisbane</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Hug, Francois" sort="Hug, Francois" uniqKey="Hug F" first="François" last="Hug">François Hug</name>
<affiliation wicri:level="1">
<nlm:affiliation>University of Nantes, Laboratory "Movement, Interactions, Performance" (EA 4334), UFR STRAPS, F-44000 Nantes, France; The University of Queensland, NHMRC Centre of Clinical Research Excellence in Spinal Pain, Injury and Health, School of Health and Rehabilitation Sciences, Brisbane, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>University of Nantes, Laboratory "Movement, Interactions, Performance" (EA 4334), UFR STRAPS, F-44000 Nantes, France; The University of Queensland, NHMRC Centre of Clinical Research Excellence in Spinal Pain, Injury and Health, School of Health and Rehabilitation Sciences, Brisbane</wicri:regionArea>
<wicri:noRegion>Brisbane</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Cresswell, Andrew G" sort="Cresswell, Andrew G" uniqKey="Cresswell A" first="Andrew G" last="Cresswell">Andrew G. Cresswell</name>
<affiliation wicri:level="1">
<nlm:affiliation>The University of Queensland, Centre for Sensorimotor Performance, School of Human Movement and Nutrition Sciences, Brisbane, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>The University of Queensland, Centre for Sensorimotor Performance, School of Human Movement and Nutrition Sciences, Brisbane</wicri:regionArea>
<wicri:noRegion>Brisbane</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Lichtwark, Glen A" sort="Lichtwark, Glen A" uniqKey="Lichtwark G" first="Glen A" last="Lichtwark">Glen A. Lichtwark</name>
<affiliation wicri:level="1">
<nlm:affiliation>The University of Queensland, Centre for Sensorimotor Performance, School of Human Movement and Nutrition Sciences, Brisbane, Australia. Electronic address: g.lichtwark@uq.edu.au.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>The University of Queensland, Centre for Sensorimotor Performance, School of Human Movement and Nutrition Sciences, Brisbane</wicri:regionArea>
<wicri:noRegion>Brisbane</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of biomechanics</title>
<idno type="eISSN">1873-2380</idno>
<imprint>
<date when="2016" type="published">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adult</term>
<term>Ankle (physiology)</term>
<term>Ankle Joint (physiology)</term>
<term>Elasticity Imaging Techniques</term>
<term>Electromyography</term>
<term>Humans</term>
<term>Imaging, Three-Dimensional</term>
<term>Isometric Contraction (physiology)</term>
<term>Male</term>
<term>Muscle Contraction (physiology)</term>
<term>Muscle Tonus</term>
<term>Muscle, Skeletal (physiology)</term>
<term>Pressure</term>
<term>Stress, Mechanical</term>
<term>Tarsal Bones</term>
<term>Torque</term>
<term>Young Adult</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Adulte</term>
<term>Articulation talocrurale (physiologie)</term>
<term>Cheville (physiologie)</term>
<term>Contraction isométrique (physiologie)</term>
<term>Contraction musculaire (physiologie)</term>
<term>Contrainte mécanique</term>
<term>Humains</term>
<term>Imagerie d'élasticité tissulaire</term>
<term>Imagerie tridimensionnelle</term>
<term>Jeune adulte</term>
<term>Moment de torsion</term>
<term>Muscles squelettiques (physiologie)</term>
<term>Mâle</term>
<term>Os du tarse</term>
<term>Pression</term>
<term>Tonus musculaire</term>
<term>Électromyographie</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Articulation talocrurale</term>
<term>Cheville</term>
<term>Contraction isométrique</term>
<term>Contraction musculaire</term>
<term>Muscles squelettiques</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Ankle</term>
<term>Ankle Joint</term>
<term>Isometric Contraction</term>
<term>Muscle Contraction</term>
<term>Muscle, Skeletal</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Adult</term>
<term>Elasticity Imaging Techniques</term>
<term>Electromyography</term>
<term>Humans</term>
<term>Imaging, Three-Dimensional</term>
<term>Male</term>
<term>Muscle Tonus</term>
<term>Pressure</term>
<term>Stress, Mechanical</term>
<term>Tarsal Bones</term>
<term>Torque</term>
<term>Young Adult</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Adulte</term>
<term>Contrainte mécanique</term>
<term>Humains</term>
<term>Imagerie d'élasticité tissulaire</term>
<term>Imagerie tridimensionnelle</term>
<term>Jeune adulte</term>
<term>Moment de torsion</term>
<term>Mâle</term>
<term>Os du tarse</term>
<term>Pression</term>
<term>Tonus musculaire</term>
<term>Électromyographie</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Muscle stiffness estimated using shear wave elastography can provide an index of individual muscle force during isometric contraction and may therefore be a promising method for quantifying co-contraction. We estimated the shear modulus of the lateral gastrocnemius (LG) muscle using supersonic shear wave imaging and measured its myoelectrical activity using surface electromyography (sEMG) during graded isometric contractions of plantar flexion and dorsiflexion (n=7). During dorsiflexion, the average shear modulus was 26 ± 6 kPa at peak sEMG amplitude, which was significantly less (P=0.02) than that measured at the same sEMG level during plantar flexion (42 ± 10 kPa). The passive tension during contraction was estimated using the passive LG muscle shear modulus during a passive ankle rotation measured at an equivalent ankle angle to that measured during contraction. The passive shear modulus increased significantly (P<0.01) from the plantar flexed position (16 ± 5 kPa) to the dorsiflexed position (26 ± 9 kPa). Once this change in passive tension from joint rotation was accounted for, the average LG muscle shear modulus due to active contraction was significantly greater (P<0.01) during plantar flexion (26 ± 8 kPa) than at sEMG-matched levels of dorsiflexion (0 ± 4 kPa). The negligible shear modulus estimated during isometric dorsiflexion indicates negligible active force contribution by the LG muscle, despite measured sEMG activity of 19% of maximal voluntary plantar flexion contraction. This strongly suggests that the sEMG activity recorded from the LG muscle during isometric dorsiflexion was primarily due to cross-talk. However, it is clear that passive muscle tension changes can contribute to joint torque during isometric dorsiflexion.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>Australie</li>
</country>
</list>
<tree>
<country name="Australie">
<noRegion>
<name sortKey="Raiteri, Brent J" sort="Raiteri, Brent J" uniqKey="Raiteri B" first="Brent J" last="Raiteri">Brent J. Raiteri</name>
</noRegion>
<name sortKey="Cresswell, Andrew G" sort="Cresswell, Andrew G" uniqKey="Cresswell A" first="Andrew G" last="Cresswell">Andrew G. Cresswell</name>
<name sortKey="Hug, Francois" sort="Hug, Francois" uniqKey="Hug F" first="François" last="Hug">François Hug</name>
<name sortKey="Lichtwark, Glen A" sort="Lichtwark, Glen A" uniqKey="Lichtwark G" first="Glen A" last="Lichtwark">Glen A. Lichtwark</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001870 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001870 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:26776929
   |texte=   Quantification of muscle co-contraction using supersonic shear wave imaging.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:26776929" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a AustralieFrV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024